

100 Digital Fundamentals

shaking involves a receiver driving a ready signal to the transmitter. The transmitter sends data only
when the receiver signals that it is ready. UARTs may support hardware handshaking. Any software
handshaking is the responsibility of the UART control program.

Software handshaking works by transmitting special binary codes that either pause or resume the
opposite end as it sends data.

XON

/

XOFF

handshaking is a common means of implementing soft-
ware flow control. When one end of the link is ready to accept data, it transmits a standard character
called XON (0x11) to the opposite device. When the receiver has filled a buffer and is unable to ac-
cept more data, an XOFF character (0x13) is transmitted. It is by good behavior that most flow con-
trol schemes work: the device that receives an XOFF must respect the signal and pause its
transmission until an XON is received. It is not uncommon to see an XON/XOFF setting in certain
serial terminal configurations.

A generic UART is shown in Fig. 5.3. The UART is divided into three basic sections: CPU inter-
face, transmitter, and receiver. The CPU interface contains various registers to configure parity, bit rate,
handshaking, and interrupts. UARTs usually provide three parity options: none, even, and odd. Bit rate
is selectable well by programming an internal counter to arbitrarily divide an external reference clock.
The range of usable bit clocks may be from several hundred bits per second to over 100 kbps.

Interrupts are used to inform the CPU when a new byte has been received and when a new byte is
ready to be transmitted. This saves the CPU from having to constantly poll the UART’s status regis-
ters for this information. However, UARTs provide status bits to aid in interrupt status reporting, so
a simple serial driver program could operate by polling rather than implementing an interrupt service
routine. Aside from general control and status registers, the CPU interface provides access to trans-
mit and receive buffers so that data can be queued for transmission and retrieved upon arrival. De-
pending on the UART, these buffers may be only one byte each, or they may be several bytes

0xA0 = 10100000 0

Even ParityData

1

Odd Parity

FIGURE 5.2 Odd and even parity.

CPU
Interface

Logic

Control
Registers

Status
Registers

Receive
Buffer

Transmit
Buffer

Data

Address, Control

Interrupt

Tx Shift
Logic

Parity
Generator

Rx Shift
Logic

Parity
Checker

Clock
Sync

Bit Clock
Divider

Reference Clock

Serial Out

Serial In

Handshaking Out

Handshaking In

FIGURE 5.3 Generic UART block diagram.

-Balch.book Page 100 Thursday, May 15, 2003 3:46 PM

Serial Communications 101

implemented as a small FIFO. Typically, these serial ports run slow enough to not require deep buff-
ers, because even a slow CPU can easily respond to a transmit/receive event before the data link
underruns the transmit buffer or overruns the receive buffer.

The transmit section implements a parallel-to-serial shift register, parity generator, and framing
logic. UARTs support framing with a start bit and one or two stop bits where the start bit is a logic 0
and stop bits are logic 1s. It is also common to transmit data LSB first. With various permutations of
framing options, parity protection, and seven or eight data bits, standard configuration notation is of
the form <parity:N/E/O>-<width:8/7>-<stop-bits:1/2>. For example, N-8-1 represents no parity, 8
data bits, and 1 stop bit. E-8-2 represents even parity, 8 data bits, and 2 stop bits. To help understand
the format of bytes transmitted by a UART, consider Fig. 5.4. Here, two data bytes are transmitted:
0xA0 and 0x67. Keep in mind that the LSB is transmitted first.

Receiving the serial data is a bit trickier than transmitting it, because there is no clock accompa-
nying the data with which the data can be sampled. This is where the asynchronous

terminology in
the UART acronym comes from. The receiver contains a clock synchronization circuit that detects
the start-bit and establishes a timing reference point from which all subsequent bits in the byte will
be sampled. This reference point is created using a higher-frequency receive clock. Rather than run-
ning the receiver at 1x the bit rate, it may be run at 16x the bit rate. Now the receive logic can de-
compose a bit into 16 time units and slide a 16-clock window according to where the start bit is
observed. It is advantageous to sample each subsequent bit halfway through its validity window for
maximum timing margin on either side of the sampling event. This allows maximum flexibility for
settling time around the edges of the electrical pulse that defines each bit.

Consider the waveform in Fig. 5.5. When the start bit is detected, the sampling window is reset,
and a sampling point halfway through is established. Subsequent bits can have degraded rising and
falling edges without causing the receiver to sample an incorrect logic level.

0

start
bit

0 0 00 0 01 1 1

stop
bit

0

start
bit0xA0

N-8-1

111 0 0 11 0

0x67

1

stop
bit

0

start
bit

0 0 00 0 01 1

0xA0

E-8-2

0

parity
bit

1

stop
bit

1

stop
bit

0

start
bit

111 0 0 11 0

0x67

1

parity
bit

1

stop
bit

1

stop
bit

FIGURE 5.4 Common byte framing formats.

x16 Rx Clock

x1 Rx Clock

Serial Input Bit #0 Bit #1Start Bit

xxx
Sampling
Window
Sampling Point xxx

FIGURE 5.5 UART receive clock synchronization.

-Balch.book Page 101 Thursday, May 15, 2003 3:46 PM

